
VBScript Reference and Samples

Date/Time Functions

Function Description

CDate Converts a valid date and time expression to the variant of subtype Date

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been added

DateDiff Returns the number of intervals between two dates

DatePart Returns the specified part of a given date

DateSerial Returns the date for a specified year, month, and day

DateValue Returns a date

Day Returns a number that represents the day of the month (between 1 and 31,
inclusive)

FormatDateTime Returns an expression formatted as a date or time

Hour Returns a number that represents the hour of the day (between 0 and 23,
inclusive)

IsDate Returns a Boolean value that indicates if the evaluated expression can be
converted to a date

Minute Returns a number that represents the minute of the hour (between 0 and 59,
inclusive)

Month Returns a number that represents the month of the year (between 1 and 12,
inclusive)

MonthName Returns the name of a specified month

Now Returns the current system date and time

Second Returns a number that represents the second of the minute (between 0 and 59,
inclusive)

Time Returns the current system time

Timer Returns the number of seconds since 12:00 AM

TimeSerial Returns the time for a specific hour, minute, and second

TimeValue Returns a time

Weekday Returns a number that represents the day of the week (between 1 and 7,
inclusive)

WeekdayName Returns the weekday name of a specified day of the week

Year Returns a number that represents the year

Conversion Functions Top

Function Description

Asc Converts the first letter in a string to ANSI code

CBool Converts an expression to a variant of subtype Boolean

CByte Converts an expression to a variant of subtype Byte

CCur Converts an expression to a variant of subtype Currency

CDate Converts a valid date and time expression to the variant of subtype Date

CDbl Converts an expression to a variant of subtype Double

Chr Converts the specified ANSI code to a character

CInt Converts an expression to a variant of subtype Integer

CLng Converts an expression to a variant of subtype Long

CSng Converts an expression to a variant of subtype Single

CStr Converts an expression to a variant of subtype String

Hex Returns the hexadecimal value of a specified number

Oct Returns the octal value of a specified number

Format Functions Top

Function Description

FormatCurrency Returns an expression formatted as a currency value

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

Math Functions Top

Function Description

Abs Returns the absolute value of a specified number

Atn Returns the arctangent of a specified number

Cos Returns the cosine of a specified number (angle)

Exp Returns e raised to a power

Hex Returns the hexadecimal value of a specified number

Int Returns the integer part of a specified number

Fix Returns the integer part of a specified number

Log Returns the natural logarithm of a specified number

Oct Returns the octal value of a specified number

Rnd Returns a random number less than 1 but greater or equal to 0

Sgn Returns an integer that indicates the sign of a specified number

Sin Returns the sine of a specified number (angle)

Sqr Returns the square root of a specified number

Tan Returns the tangent of a specified number (angle)

Array Functions Top

Function Description

Array Returns a variant containing an array

Filter Returns a zero-based array that contains a subset of a string array based on a
filter criteria

IsArray Returns a Boolean value that indicates whether a specified variable is an array

Join Returns a string that consists of a number of substrings in an array

LBound Returns the smallest subscript for the indicated dimension of an array

Split Returns a zero-based, one-dimensional array that contains a specified number of
substrings

UBound Returns the largest subscript for the indicated dimension of an array

String Functions Top

Function Description

InStr Returns the position of the first occurrence of one string within another. The
search begins at the first character of the string

InStrRev Returns the position of the first occurrence of one string within another. The
search begins at the last character of the string

LCase Converts a specified string to lowercase

Left Returns a specified number of characters from the left side of a string

Len Returns the number of characters in a string

LTrim Removes spaces on the left side of a string

RTrim Removes spaces on the right side of a string

Trim Removes spaces on both the left and the right side of a string

Mid Returns a specified number of characters from a string

Replace Replaces a specified part of a string with another string a specified number of
times

Right Returns a specified number of characters from the right side of a string

Space Returns a string that consists of a specified number of spaces

StrComp Compares two strings and returns a value that represents the result of the
comparison

String Returns a string that contains a repeating character of a specified length

StrReverse Reverses a string

UCase Converts a specified string to uppercase

Other Functions Top

Function Description

CreateObject Creates an object of a specified type

Eval Evaluates an expression and returns the result

GetLocale Returns the current locale ID

GetObject Returns a reference to an automation object from a file

GetRef Allows you to connect a VBScript procedure to a DHTML event on your pages

InputBox Displays a dialog box, where the user can write some input and/or click on a

button, and returns the contents

IsEmpty Returns a Boolean value that indicates whether a specified variable has been
initialized or not

IsNull Returns a Boolean value that indicates whether a specified expression contains no
valid data (Null)

IsNumeric Returns a Boolean value that indicates whether a specified expression can be

evaluated as a number

IsObject Returns a Boolean value that indicates whether the specified expression is an
automation object

LoadPicture Returns a picture object. Available only on 32-bit platforms

MsgBox Displays a message box, waits for the user to click a button, and returns a value
that indicates which button the user clicked

RGB Returns a number that represents an RGB color value

Round Rounds a number

ScriptEngine Returns the scripting language in use

ScriptEngineBuildVersion Returns the build version number of the scripting engine in use

ScriptEngineMajorVersion Returns the major version number of the scripting engine in use

ScriptEngineMinorVersion Returns the minor version number of the scripting engine in use

SetLocale Sets the locale ID and returns the previous locale ID

TypeName Returns the subtype of a specified variable

VarType Returns a value that indicates the subtype of a specified variable

VBScript Keywords

Keyword Description

empty Used to indicate an uninitialized variable value. A variable value is uninitialized
when it is first created and no value is assigned to it, or when a variable value is
explicitly set to empty.

Example:
dim x 'the variable x is uninitialized!
x="ff" 'the variable x is NOT uninitialized anymore
x=empty 'the variable x is uninitialized!

Note: This is not the same as Null!!

isEmpty Used to test if a variable is uninitialized.

Example: If (isEmpty(x)) 'is x uninitialized?

nothing Used to indicate an uninitialized object value, or to disassociate an object variable
from an object to release system resources.

Example: set myObject=nothing

is nothing Used to test if a value is an initialized object.

Example: If (myObject Is Nothing) 'is it unset?

Note: If you compare a value to Nothing, you will not get the right result!
Example: If (myObject = Nothing) 'always false!

null Used to indicate that a variable contains no valid data.

One way to think of Null is that someone has explicitly set the value to "invalid",
unlike Empty where the value is "not set".

Note: This is not the same as Empty or Nothing!!

Example: x=Null 'x contains no valid data

isNull Used to test if a value contains invalid data.

Example: if (isNull(x)) 'is x invalid?

true Used to indicate a Boolean condition that is correct (true has a value of -1)

false Used to indicate a Boolean condition that is not correct (false has a value of 0)

VBScript Procedures

We have two kinds of procedures: The Sub procedure and the Function procedure.

A Sub procedure:

• is a series of statements, enclosed by the Sub and End Sub statements

• can perform actions, but does not return a value

• can take arguments that are passed to it by a calling procedure

• without arguments, must include an empty set of parentheses ()

Sub mysub()

 some statements

End Sub

or

Sub mysub(argument1,argument2)

 some statements

End Sub

A Function procedure:

• is a series of statements, enclosed by the Function and End Function statements

• can perform actions and can return a value

• can take arguments that are passed to it by a calling procedure

• without arguments, must include an empty set of parentheses ()

• returns a value by assigning a value to its name

Function myfunction()

 some statements

 myfunction=some value

End Function

or

Function myfunction(argument1,argument2)

 some statements

 myfunction=some value

End Function

Call a Sub or Function Procedure

When you call a Function in your code, you do like this:

name = findname()

Here you call a Function called "findname", the Function returns a value that will be stored in the variable "name".

Or, you can do like this:

msgbox "Your name is " & findname()

Here you also call a Function called "findname", the Function returns a value that will be displayed in the message box.

When you call a Sub procedure you can use the Call statement, like this:

Call MyProc(argument)

Or, you can omit the Call statement, like this:

MyProc argument

What is a Variable?

A variable is a "container" for information you want to store. A variable's value can change during the script. You can

refer to a variable by name to see its value or to change its value. In VBScript, all variables are of type variant, that can
store different types of data.

Rules for Variable Names:

• Must begin with a letter

• Cannot contain a period (.)

• Cannot exceed 255 characters

Declaring Variables

You can declare variables with the Dim, Public or the Private statement. Like this:

dim name

name=some value

Now you have created a variable. The name of the variable is "name".

You can also declare variables by using its name in your script. Like this:

name=some value

Now you have also created a variable. The name of the variable is "name".

However, the last method is not a good practice, because you can misspell the variable name later in your script, and
that can cause strange results when your script is running. This is because when you misspell for example the "name"

variable to "nime" the script will automatically create a new variable called "nime". To prevent your script from doing this
you can use the Option Explicit statement. When you use this statement you will have to declare all your variables with
the dim, public or private statement. Put the Option Explicit statement on the top of your script. Like this:

option explicit

dim name

name=some value

Assigning Values to Variables

You assign a value to a variable like this:

name="Hege"

i=200

The variable name is on the left side of the expression and the value you want to assign to the variable is on the right.
Now the variable "name" has the value "Hege".

Lifetime of Variables

How long a variable exists is its lifetime.

When you declare a variable within a procedure, the variable can only be accessed within that procedure. When the

procedure exits, the variable is destroyed. These variables are called local variables. You can have local variables with the
same name in different procedures, because each is recognized only by the procedure in which it is declared.

If you declare a variable outside a procedure, all the procedures on your page can access it. The lifetime of these
variables starts when they are declared, and ends when the page is closed.

Array Variables

Sometimes you want to assign more than one value to a single variable. Then you can create a variable that can contain

a series of values. This is called an array variable. The declaration of an array variable uses parentheses () following the
variable name. In the following example, an array containing 3 elements is declared:

dim names(2)

The number shown in the parentheses is 2. We start at zero so this array contains 3 elements. This is a fixed-size array.
You assign data to each of the elements of the array like this:

names(0)="Tove"

names(1)="Jani"

names(2)="Stale"

Similarly, the data can be retrieved from any element using the index of the particular array element you want. Like this:

mother=names(0)

You can have up to 60 dimensions in an array. Multiple dimensions are declared by separating the numbers in the
parentheses with commas. Here we have a two-dimensional array consisting of 5 rows and 7 columns:

dim table(4, 6)

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions. You can use conditional
statements in your code to do this.

In VBScript we have three conditional statements:

• if statement - use this statement if you want to execute a set of code when a condition is true

• if...then...else statement - use this statement if you want to select one of two sets of lines to execute

• if...then...elseif statement - use this statement if you want to select one of many sets of lines to execute

• select case statement - use this statement if you want to select one of many sets of lines to execute

If....Then.....Else

You should use the If...Then...Else statement if you want to

• execute some code if a condition is true

• select one of two blocks of code to execute

If you want to execute only one statement when a condition is true, you can write the code on one line:

if i=10 Then msgbox "Hello"

There is no ..else.. in this syntax. You just tell the code to perform one action if the condition is true (in this case if
i=10).

If you want to execute more than one statement when a condition is true, you must put each statement on separate
lines and end the statement with the keyword "End If":

if i=10 Then

 msgbox "Hello"

 i = i+1

end If

There is no ..else.. in this syntax either. You just tell the code to perform multiple actions if the condition is true.

If you want to execute a statement if a condition is true and execute another statement if the condition is not true, you
must add the "Else" keyword:

if i=10 then

 msgbox "Hello"

else

 msgbox "Goodbye"

end If

The first block of code will be executed if the condition is true, and the other block will be executed otherwise (if i is not
equal to 10).

If....Then.....Elseif

You can use the if...then...elseif statement if you want to select one of many blocks of code to execute:

if payment="Cash" then

 msgbox "You are going to pay cash!"

 elseif payment="Visa" then

 msgbox "You are going to pay with visa."

 elseif payment="AmEx" then

 msgbox "You are going to pay with American Express."

 else

 msgbox "Unknown method of payment."

end If

Select Case

You can also use the SELECT statement if you want to select one of many blocks of code to execute:

select case payment

 case "Cash"

 msgbox "You are going to pay cash"

 case "Visa"

 msgbox "You are going to pay with visa"

 case "AmEx"

 msgbox "You are going to pay with American Express"

 case Else

 msgbox "Unknown method of payment"

end select

This is how it works: First we have a single expression (most often a variable), that is evaluated once. The value of the

expression is then compared with the values for each Case in the structure. If there is a match, the block of code
associated with that Case is executed.

Looping Statements

Very often when you write code, you want to allow the same block of code to run a number of times. You can use looping
statements in your code to do this.

In VBScript we have four looping statements:

• For...Next statement - runs statements a specified number of times.

• For Each...Next statement - runs statements for each item in a collection or each element of an array

• Do...Loop statement - loops while or until a condition is true

• While...Wend statement - Do not use it - use the Do...Loop statement instead

For...Next

You can use a For...Next statement to run a block of code, when you know how many repetitions you want.

You can use a counter variable that increases or decreases with each repetition of the loop, like this:

For i=1 to 10

 some code

Next

The For statement specifies the counter variable (i) and its start and end values. The Next statement increases the
counter variable (i) by one.

Step Keyword

Using the Step keyword, you can increase or decrease the counter variable by the value you specify.

In the example below, the counter variable (i) is increased by two each time the loop repeats.

For i=2 To 10 Step 2

 some code

Next

To decrease the counter variable, you must use a negative Step value. You must specify an end value that is less than
the start value.

In the example below, the counter variable (i) is decreased by two each time the loop repeats.

For i=10 To 2 Step -2

 some code

Next

Exit a For...Next

You can exit a For...Next statement with the Exit For keyword.

For Each...Next

A For Each...Next loop repeats a block of code for each item in a collection, or for each element of an array.

The For Each...Next statement looks almost identical to the For...Next statement. The difference is that you do not have
to specify the number of items you want to loop through.

dim names(2)

names(0)="Tove"

names(1)="Jani"

names(2)="Hege"

For Each x in names

 document.write(x & "
")

Next

Do...Loop

You can use Do...Loop statements to run a block of code when you do not know how many repetitions you want. The
block of code is repeated while a condition is true or until a condition becomes true.

Repeating Code While a Condition is True

You use the While keyword to check a condition in a Do...Loop statement.

Do While i>10

 some code

Loop

If i equals 9, the code inside the loop above will never be executed.

Do

 some code

Loop While i>10

The code inside this loop will be executed at least one time, even if i is less than 10.

Repeating Code Until a Condition Becomes True

You use the Until keyword to check a condition in a Do...Loop statement.

Do Until i=10

 some code

Loop

If i equals 10, the code inside the loop will never be executed.

Do

 some code

Loop Until i=10

The code inside this loop will be executed at least one time, even if i is equal to 10.

Exit a Do...Loop

You can exit a Do...Loop statement with the Exit Do keyword.

Do Until i=10

 i=i-1

 If i<10 Then Exit Do

Loop

The code inside this loop will be executed as long as i is different from 10, and as long as i is greater than 10.

